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EXASCALE SYSTEM CHALLENGES 

 DARPA study (2008) identified four major 
challenges: 

– Energy and Power challenge 

– Memory and Storage challenge 

– Concurrency and Locality challenge 

– Resiliency challenge 

 All of these require deep consideration in 
the design of the compute nodes, the 
system-level fabric and the programming 
model 

 Today’s talk will focus on the compute 
nodes and the associated programming 
model 
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten 

Dotted line extrapolations by C. Moore 

35 YEARS OF MICROPROCESSOR TREND DATA 
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Three Eras of Processor Performance 
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Shared Level 3 Cache 

TECHNICALLY POSSIBLE HPC NODE FOR 2018 

Shared Level 3 Cache 

Memory Controllers, Prefetch, Compression 

Integrated Northbridge Controller 

DIMM 
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32-64 GB Stacked DRAM 
Memory 

High Speed 

Interconnect 

(40-100Gbs each) 

~8 High 
Perf x86 

Cores 

------ 
~10 TFlop 

Vector 
Units 

1st Level Packaging Boundary 

Checkpoint 
Storage 

PCM 

NIC 

200-250W 

ECC 

Server-class RAS Server-class RAS 

Systems 
Management 

Port 
uC 

M$  M$  M$  M$  

Concept represents engineering capability only, 
and is not intended as a product roadmap 
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Challenge:  Nested Data Parallelism 

i=0 
i++ 

load x(i) 
fmul 
store 

cmp i (1000000) 
bc 

…
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i,j=0 
i++ 
j++ 

load x(i,j) 
fmul 
store 

cmp j (100000) 
bc 

cmp i (100000) 
bc 

2D array  
representing 
very large  

dataset 

Loop 1M  
times for  
1M pieces  

of data 

Coarse-grain data 
parallel Code 

Maps very well to 
discrete GPU type 

data parallel engines 
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Loop 16 times for 16 
pieces of data 

Fine-grain data 
parallel Code 

Maps very well to 
integrated SIMD 

dataflow (SSE/AVX) 

Nested data 
parallel Code 

Lots of conditional data 
parallelism 

 

Benefits from closer 
coupling (CPU & GPU) 
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GPU COMPUTE OFFLOAD – 3 PHASES 
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2012 - 2020 

Fusion System 
Architecture 

Peer-based APIs 
 

 Targeted for mainstream 
programmers 

 Full C++ support 

 GPU is a 1st-class part of 
the system architecture 
(not a device) 

 Single unified & coherent 
address space 

 Generalized user-level 
runtime queuing structure 

 Support for Nested Data 
Parallel programs 

 Logical extension of OCL 

 Support for pre-emption 
and OS-driven context 
swapping 

Architected Era 

2009 - 2011 

OCL/DC 
Driver-based APIs 

 Expert programmers only 

 “C and C++ like” 

 Exploit more compute 
centric APIs & data types 

 Multiple address spaces & 
explicit data movement 

 Specialized work queue 
based structures 

 Concurrent GFX and 
compute offload capable 

Standards  
Drivers Era 

2002 - 2008 

Graphics & Proprietary 
Driver-based APIs 

 

 “Hacker” programmers only 

 Exploit early programmable 
“shader cores” in the GPU 

 Make your program look 
like “graphics” to the GPU 

 CUDA, Brook+, etc 

Proprietary  
Drivers Era 
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WHAT IS THE FUSION SYSTEM ARCHITECTURE (FSA)? 

Foundation of AMD’s heterogeneous compute platform strategy 

Enables data intensive applications to run on the most appropriate 
processor for the best possible performance and power 

Enables parallel task queuing runtimes to access the GPU directly 
and embrace heterogeneous computing 

Introduces an architected interface to drive the next platform 
standard for heterogeneous computing 

Continues to evolve and improve the standards based driver 
model for graphics, video and computing with discrete GPUs 
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MORE FSA DETAILS … 
 

… WILL ALL BE RELEASED AT : 
 

AMD’s FUSION DEVELOPER SUMMIT 

June 13-16, 2011 in Seattle, WA 

Execution Model 

Memory Model 

ABI Specifications 

Runtime Environment Specifications 

Programming Examples for OpenCL 
and DirectX11TM 

And, much more … 

AMD Fusion Developer  
Summit  

June 13-16, 2011 
Seattle, WA, USA 

For more information: www.amd.com/afds  

http://www.amd.com/afds
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 Designed to support parallel task queuing runtimes 

– TBB, ConcRT, Grand Central 

– Allows programmers to manage tasks, not threads 

– Load balances through work stealing 

 Architected Queuing Model 

– CPU -> CPU (already there) 

– CPU -> GPU (offload interface) 

– GPU -> GPU (recursion, tree traversal) 

– GPU -> CPU (syscalls, IO) 

 GPU support for function pointers, recursion, exceptions, etc 

 User mode queuing 

– Low latency dispatch directly from applications 

– GPU hardware processes queues from multiple processes in round robin 
manner  

– Progress notifications written directly to memory and employ standard 
OS signaling 

– No new CPU instructions required 

FSA EXECUTION MODEL OVERVIEW 
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TASK QUEUING RUNTIME ON CPUS 

Key: 
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TASK QUEUING RUNTIME ON THE FSA PLATFORM 

Key: CPU Threads 
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TASK QUEUING RUNTIME ON THE FSA PLATFORM 
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DRIVER AND FSA SOFTWARE STACKS 

AMD user mode component 

AMD kernel mode component 

All others contributed by third parties or AMD 

 

 

Hardware - APUs, CPUs, GPUs 

Domain Libraries 

OpenCL,DX Runtimes,  

User Mode Drivers 

Graphics Kernel Mode 

Driver 

Apps 
Apps 

Apps 
Apps 

Apps 
Apps 

Task Queuing Libraries 

(ConcRT, GCD, TBB etc) 

FSA Kernel  

Mode Driver 

FSA Runtime 

FSA Domain Libraries 

Apps 
Apps 

Apps 
Apps 

Apps 
Apps 

FSA 

JIT 
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PROGRAMMING AT SCALE (100K NODES!) 

• Reality:  Different hardware technologies present different 
characteristics in the full system design 

– NUMA – Latency, BW, coherency support 

– Networking Tiers – Variable communication, synch, data movement costs 

– Reliability 

• Some of these can be flattened out with brute force increased cost 

– Not always practical or desirable to do so … 

• The balance of these differences are presented to SW 

– Glass half empty:  Programmability, performance or both suffer  

– Glass half full: Fast time-to-functionality; then, gradual optimization 
opportunity as needed  

• Abstractions that present these realities in simple ways are needed: 

– Locality 

– Optimized Communications:  PGAS extended addressing 

– RAS support and non-disruptive checkpointing 

– Resource and systems management @ scale (system hypervisor) 
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COMMONALITIES BETWEEN MEGA-DATACENTERS 

AND SUPERCOMPUTERS? 

Attribute Mega-Datacenter Supercomputer Commonality? 

Scale 10K  100K nodes 10K  100K nodes Maybe 

Workload diversity 
Moderate, but almost all 
integer processing 

Moderate, but almost all 
floating point processing 

No 

Top optimization 
priorities 

1. TCO (CapEx and OpEx) 
2. Throughput/W/$$ 

1. Sustained FLOPs 
2. TCO 

Yes -- TCO 

Node-level power 10’s of Watts 100’s of Watts 
No -- Power  
Density 

Memory BW & Cap High Very High Yes 

Interconnect BW Working towards 100GbE Working towards 1 Tbps Maybe 

Interconnect 
Topology 

Embrace Tiers w/ natural 
parallelism boundaries 

Desire as Flat as possible No -- Costs 

Programming 
model 

Exploit natural parallelism 
to build fast response time 
Map/Reduce, Hadoop 

MPI, OpenMP, OpenCL (!) Maybe 

Power 
Provisioning 

Close proximity to cheap 
power 

Close proximity to electric 
power generation facilities 

Yes 

Cooling 
Sophisticated heat flow 
engineering 

Sophisticated heat flow 
engineering 

Yes 

Dealing w/ 
Failures 

Fail-in-place; self recovering 
algorithms 

Working towards extensive 
checkpointing 

Maybe 
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SUMMARY AND CONCLUDING REMARKS 

• 10+TFLOP processing nodes for Exascale-class Supercomputers are 
within reach by 2018 

– TSV Stacked Memory  Reasonable Memory Bandwidth (0.1B/FLOP) 

– 15nm, 11nm, 8nm CMOS Roadmap  CPU & Large GPU integration 

–  Balance  Leading edge x86 sequential and GPU/Vector machines 

• Full system architectures, such as AMD’s Fusion System Architecture, 
will help make GPU/Vector programming approachable by more people 

– Unified system address space   A pointer is a pointer 

– X86-based page tables throughout   User-level Task Parallel Runtimes 

– Reduced overhead of offload  Finer granularity offload 

• Modern Mega-datacenters share some of the same problems as the 
upcoming class of Supercomputers 

– The MDC guys have HUGE financial motivations for continuing to mature 
this technology 

– Alignment is well advised  
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DISCLAIMER 

The information presented in this document is for informational purposes only and may contain technical 
inaccuracies, omissions and typographical errors. 

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND 
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN 
THIS INFORMATION. 

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY 
PARTICULAR PURPOSE.  IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, 
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. 
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